书吧

字:
关灯 护眼
书吧 > 走进不科学 > 第三百零六章 高斯的宝藏(下)(8.4K)

第三百零六章 高斯的宝藏(下)(8.4K)(3/5)

对他说,牛顿先生,车已经备好了,不要停下来啊】!”

    “先贤之言如同黑夜中的亮光,令我重新拥有了向前看的勇气。”

    “恰好狄利克雷到访,偶见他手中维尔茨堡大学修订的‘数学未解之谜’,玩心渐起。”

    “于是随手写下几个小纸片,折叠成团,找来特雷泽随意抽取其一,上面的题目是‘奇完全数是否存在’。”

    “后花费四小时三十五分钟写下此稿,提上裤子,评价......一般货色。”

    徐云:

    “.......”

    随后他深吸一口气,翻到了下一页。

    刚一翻页,一个硕大明显的字便出现在了他面前:

    解。

    解:

    “众所周知。”

    “正整数n是一个偶完全数当且仅当n=2m??1(2m??1)n=2^{m-1}(2^{m}-1)n=2m??1(2m??1)其中  m  ,  2  m??1m,2^{m}-1m,2^m??1  都是素数。”

    “设p是一个素数,  a是一个正整数,那么有:”

    “σ(pa)=1+p+p??+...+p^a={p^(a+1)??1}/p-1。”

    “设正整数n有素因子分解n=p^(a1/1)p^(a2/2)p^(a3/3).....p^(as/s)。”

    “由于因子和函数σ是乘性函数,那么:”

    “σ(n)={p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}......·{p^(as+s/1)-1}/{ps-1}=s∏j1·{p^(aj+j/1)-1}/{pj-1}。(S应该在∏的上面j=1在下面,不过起点不支持.....)”

    “又因为其中p是奇素数,  a是正整数,  s≥1。”

    “所以有{p^(a1+1/1)-1}/{p1-1}<{p^(a1+1/1)}/{p1-1}=(p1)/(p1-1)·p^(a1-1/1)≠2p^(a1-1/1)≠2p^(a1-1/1)。”

    “{p^(a2+2/1)-1}/{p2-1}<{p^(a2+1/1)}/{p2-1}=(p2)/(p2-1)·p^(a2-2/1)≠2p^(a2-2/1)≠2p^(a2-2/1)”

    .......

    “{p^(as+s/1)-1}/{ps-1}<{p^(as+1/1)}/{ps-1}=(ps)/(ps-1)·p^(as-s/1)≠2p^(as-s/1)≠2p^(as-s/1)”

    “在平方数中,它们连续相加之和,乘6,有的被n乘n加1整除,等于2n加1,即2n减1是质数,2n加1是质数,故它是一对孪生素数。”

    “在2次幂,5次幂幂连续相加中,有2乘3乘5乘7……的形式,在数学计算中,反之,是计算连续相加之和,与1次幂,2次幂相同,写出它计算的形式,即偶数加1与减1,可写为质数与合数.....”

    “所以σ(n)≠2{p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}......·{p^(as+s/1)-1}/{ps-1}。”

    “即σ(n)≠2n,其中n为大于1的奇数,而σ(1)=1,σ(1)=1。”

    “所以......”

    “不存在奇完全数。”(其实最后一个步骤是过不来的,取了个巧,勿要深究,灵感参考自10.3969/j.)

    看着落笔处的最后一句话。

    徐云沉默良久。

    心中的千言万语,最终化作了一声长叹。

    这就是高斯啊......

    一个站在了古往今来数学史最巅峰的男人,一个征服疆域比某个小胡子还要广阔的德意志人。

    一卷看似随笔般的手稿,便让徐云看的如痴如醉......

    忽然。

    徐云的心中又想起了高斯此前对他说的那句话:

    “我不创造奇迹,因为我本就是一个奇迹。”

    这位个子不高的小老头,凭着一身的才华聪慧,硬生生的成为了数学史上的最高峰之一。

    哪怕在徐云穿越的后世,也依旧无人可望其项背。

    话说回来。

    小牛、老苏、老贾、法拉第、再加上今天的高斯......

    徐云已经记不清,这是自己第几次感叹先贤的智慧了。

    如果有机会,真想把自己的经历写成一本小说啊......

    而就在徐云心绪纷飞之际。

    他的耳边忽然响起了高斯的声音:


本章未完,请点击下一页继续阅读》》
『加入书签,方便阅读』
内容有问题?点击>>>邮件反馈